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1. Introduction

There has been considerable interest in the open spin-1/2 XXZ quantum spin chain with

general integrable boundary terms [1, 2], whose Hamiltonian can be written as

H =
1

2

N−1
∑

n=1

(

σx
nσx

n+1 + σy
nσy

n+1 + cosh η σz
nσz

n+1

)

+
1

2
sinh η

[

coth α− tanh β−σz
1 + cosech α− sech β−( cosh θ−σx

1 + i sinh θ−σy
1)

− coth α+ tanh β+σz
N + cosech α+ sech β+( cosh θ+σx

N + i sinh θ+σy
N )

]

, (1.1)

where η is the bulk anisotropy parameter, and α± , β± , θ± are free boundary parameters.1

Except for the special case α± or β± → ∞ when the boundary terms become di-

agonal [3 – 5], the boundary terms break the bulk U(1) symmetry generated by Sz; i.e.,

the model has no continuous symmetry. For generic values of boundary parameters, this

model does not seem to have a simple pseudovacuum, which precludes constructing a

1Under a global spin rotation about the z axis, the bulk terms remain invariant, and the boundary

parameters θ± become shifted by the same constant, θ± 7→ θ± + const. Hence, the energy (and in fact, the

transfer matrix eigenvalues) depend on θ± only through the difference θ− − θ+.
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conventional algebraic Bethe Ansatz solution. Being associated with the spin-1/2 rep-

resentation of Uq(su(2)), this model is but the simplest of an infinite hierarchy of more

complicated integrable quantum spin chains involving higher-dimensional representations

and/or higher-rank algebras. Hence, solving the former model is presumably a prerequisite

for solving any of the latter ones. This model also has numerous applications in statistical

mechanics, condensed matter and quantum field theory.

A Bethe Ansatz solution of this model was found in [6 – 9] for the case that the bound-

ary parameters obey the constraint

α− + ε1β− + ε2α+ + ε3β+ =ε0(θ− − θ+) + ηk +
1 − ε2

2
iπ mod (2iπ) , ε1ε2ε3 =+1, (1.2)

where εi = ±1, and k is an integer such that |k| ≤ N−1 and N−1+k is even. Completeness

of this solution is not straightforward, as two sets of Bethe Ansatz equations are generally

needed in order to obtain all 2N levels [8]. Related work includes [10 – 16].

There remained the problem of solving the model (1.1) when the constraint (1.2) is not

satisfied. Building on earlier work [17, 18], we recently proposed in [19] a solution of the

model for arbitrary values of the boundary parameters, provided that the bulk anisotropy

parameter has values

η =
iπ

p + 1
, (1.3)

where p is a positive integer. Hence, q ≡ eη is a root of unity, satisfying qp+1 = −1.

As is well known, for both the closed chain and the open chain with diagonal boundary

terms, the eigenvalues of the Hamiltonian (and more generally, the transfer matrix) can

be expressed in terms of zeros (“Bethe roots”) of a single function Q(u). This is in sharp

contrast with the solution [19], which involves multiple Q functions, and therefore, multiple

sets of Bethe roots. The number of such Q functions depends on the value of p. (Generalized

T − Q equations involving two such Q functions first arose in [18] for special values of the

boundary parameters.)

The solution [19] has additional properties which distinguish it from typical Bethe

Ansatz solutions: the Q functions also have normalization constants which must be deter-

mined; and the Bethe Ansatz equations have a nonconventional form. Given the unusual

nature of this solution, one can justifiably wonder whether it provides a practical means

of computing properties of the chain in the thermodynamic (N → ∞) limit. To address

this question, we set out to compute the so-called boundary or surface energy (i.e., the

order 1 contribution to the ground-state energy), which is perhaps the most accessible

boundary-dependent quantity. For the case of diagonal boundary terms, this quantity was

first computed numerically in [4], and then analytically in [20].

We find that the boundary energy computation is indeed feasible. The key point is

that, when the boundary parameters are in some suitable domain, the ground-state Bethe

roots appear to follow certain remarkable patterns. By assuming the strict validity of these

patterns (“string hypothesis”), the Bethe equations reduce to a conventional form. Hence,

standard techniques can then be used to complete the computation. We find that our
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final result (3.28) for the boundary energy coincides with the result obtained in [21] for

the case that the boundary parameters obey the constraint (1.2), and in [22] for special

values [17, 18] of the boundary parameters at roots of unity.

The outline of this paper is as follows. In section 2, we briefly review the Bethe Ansatz

solution [19] of the model (1.1) at roots of unity (1.3). In section 3, we treat the case of

even p, followed by the case of odd p in section 4. This is followed by discussion of our

results and a brief outline of our future work in section 5.

2. Bethe Ansatz

In this section, we briefly recall the Bethe Ansatz solution [19]. In order to ensure hermitic-

ity of the Hamiltonian (1.1), we take the boundary parameters β± real; α± imaginary; θ±
imaginary. We begin by introducing the Ansatz for the various Q(u) functions that appear

in our solution, which we denote as aj(u) and bj(u):

aj(u) = Aj

2Ma
∏

k=1

sinh(u − u
(aj )
k ) , bj(u) = Bj

2Mb
∏

k=1

sinh(u − u
(bj)
k ) ,

j = 1 , . . . , b
p + 1

2
c , (2.1)

where {u
(aj )
k , u

(bj)
k } are the zeros of aj(u) and bj(u) respectively, and b c denotes integer

part. If p is even, then there is one additional set of functions corresponding to j = p
2 + 1,

a p

2
+1(u) = A p

2
+1

Ma
∏

k=1

sinh(u − u
(ap

2
+1

)

k ) sinh(u + u
(ap

2
+1

)

k ) ,

b p

2
+1(u) = B p

2
+1

Mb
∏

k=1

sinh(u − u
(b p

2
+1

)

k ) sinh(u + u
(b p

2
+1

)

k ) . (2.2)

The normalization constants {Aj , Bj} are yet to be determined.2 We assume that N is

even, in which case the integers Ma ,Mb are given by

Ma =
N

2
+ 2p , Mb =

N

2
+ p − 1 , (2.3)

It is clear from (2.1), (2.2) that aj(u) and bj(u) have the following periodicity and crossing

properties,

aj(u + iπ) = aj(u) , bj(u + iπ) = bj(u) , j = 1 , . . . , b
p

2
c + 1 , (2.4)

a p

2
+1(−u) = a p

2
+1(u) , b p

2
+1(−u) = b p

2
+1(u) . (2.5)

2One of these normalization constants can be set to unity.
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The zeros of the functions {aj(u)} and {bj(u)} satisfy the following Bethe Ansatz

equations

h0(−u
(a1)
l − η)

h0(u
(a1)
l )

= −
f1(u

(a1)
l ) a1(−u

(a1)
l ) + g1(u

(a1)
l ) Y (u

(a1)
l )2 b1(−u

(a1)
l )

2a2(u
(a1)
l ) h1(−u

(a1)
l − η)

∏p
k=1 h1(u

(a1)
l + kη)

, (2.6)

h(−u
(aj )
l − jη)

h(u
(aj )
l + (j − 1)η)

= −
aj−1(u

(aj )
l )

aj+1(u
(aj )
l )

, j = 2 , . . . , b
p

2
c + 1 , (2.7)

and

h0(−u
(b1)
l − η)

h0(u
(b1)
l )

= −
f1(u

(b1)
l ) b1(−u

(b1)
l ) + g1(u

(b1)
l ) a1(−u

(b1)
l )

2b2(u
(b1)
l ) h1(−u

(b1)
l − η)

∏p
k=1 h1(u

(b1)
l + kη)

, (2.8)

h(−u
(bj )
l − jη)

h(u
(bj )
l + (j − 1)η)

= −
bj−1(u

(bj)
l )

bj+1(u
(bj)
l )

, j = 2 , . . . , b
p

2
c + 1 , (2.9)

where a p

2
+2(u) = a p

2
(−u) and a p+3

2

(u) = a p+1

2

(−u) for even and odd values of p, respec-

tively, and similarly for the b’s. Moreover,

h(u) = h0(u) h1(u) , (2.10)

where h0(u) and h1(u) are as follows

h0(u) = sinh2N (u + η)
sinh(2u + 2η)

sinh(2u + η)
,

h1(u) = −4 sinh(u + α−) cosh(u + β−) sinh(u + α+) cosh(u + β+) . (2.11)

We also define the quantities

g1(u) = 2 sinh(2(p + 1)u) (2.12)

and

Y (u)2 =

2
∑

k=0

µk coshk(2(p + 1)u) . (2.13)

Explicit expressions for the coefficients µk in (2.13), which depend on the boundary pa-

rameters, as well as for the function f1(u), are listed in the appendix for both even and

odd values of p.

Moreover, there are additional Bethe-Ansatz-like equations

a1(
η

2
) = a2(−

η

2
) , (2.14)

aj−1((
1

2
− j)η) = aj+1((

1

2
− j)η) , j = 2 , . . . , b

p

2
c + 1 , (2.15)

which relate the normalization constants {Aj}; and also

b1(
η

2
) = b2(−

η

2
) , (2.16)

bj−1((
1

2
− j)η) = bj+1((

1

2
− j)η) , j = 2 , . . . , b

p

2
c + 1 , (2.17)
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which relate the normalization constants {Bj}. There are also equations that relate the

normalization constants A1 and B1, such as

f1(−α− − η) b1(α− + η) = −g1(−α− − η) a1(α− + η) . (2.18)

The energy eigenvalues of the Hamiltonian (1.1) are given by

E =
1

2
sinh η

2Mb
∑

l=1

[

coth(u
(bj )
l + (j − 1)η) − coth(u

(bj−1)
l + (j − 1)η)

]

+ E0 ,

j = 2 , . . . , b
p + 1

2
c , (2.19)

where E0 is defined as

E0 =
1

2
sinh η (coth α− + tanh β− + coth α+ + tanh β+) +

1

2
(N − 1) cosh η . (2.20)

For even p, there is one more expression for the energy corresponding to j = p
2 + 1,

E =
1

2
sinh η

{

Mb
∑

l=1

[

coth(u
(b p

2
+1

)

l +
pη

2
) − coth(u

(b p
2
+1

)

l −
pη

2
)

]

−

2Mb
∑

l=1

coth(u
(b p

2
)

l +
pη

2
)

}

+ E0 . (2.21)

There are also similar expressions for the energy in terms of a roots {u
(aj )
l } [19].

3. Even p

In this section, we consider the case where the bulk anisotropy parameter assumes the

values (1.3) with p even, i.e., η = iπ
3 , iπ

5 , . . .. We have studied the Bethe roots corresponding

to the ground state numerically for small values of p and N along the lines of [8]. We have

found that, when the boundary parameters are in some suitable domain (which we discuss

further below eq. (3.28)), the ground state Bethe roots {u
(aj )
k , u

(bj)
k } have a remarkable

pattern. An example with p = 2 , N = 4 is shown in figure 1. Specifically, these roots

can be categorized into “sea” roots, {v
±(aj )
k , v

±(bj )
k } (the number of which depends on N)

and the remaining “extra” roots, {w
±(aj ,l)
k , w

±(bj )
k } (the number of which depends on p)

according to the following pattern which we adopt as our “string hypothesis”.

3.1 Sea roots {v
±(aj )
k , v

±(bj )
k }

Sea roots of all {aj(u) , bj(u)} functions for any even p are summarized below,

v
±(aj )
k = v

±(bj )
k = ±ṽk +

(

2p + 3 − 2j

2

)

η , k = 1 , . . . ,
N

2
,

j = 1 , . . . ,
p

2
+ 1 , (3.1)

where ṽk are real and positive. In figure 1, the sea roots are indicated with red stars.
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Figure 1: Ground-state Bethe roots for p = 2, N = 4, α
−

= 0.604i, α+ = 0.535i, β
−

= −1.882,

β+ = 1.878, θ
−

= 0.6i, θ+ = 0.7i.

Note that the real parts (±ṽk) are independent of j. This, as we shall see, greatly

simplifies the analysis. Furthermore, for each sea root with real part +ṽk, there is an

additional “mirror” sea root with real part −ṽk, for a total of N sea roots, provided

j 6= p
2 + 1. For j = p

2 + 1, there are only N
2 sea roots +ṽk + iπ

2 (i.e., just the root

with positive real part) due to the crossing symmetry (2.5) of the functions a p

2
+1(u) and

b p

2
+1(u).3

3.2 Extra roots {w
±(aj ,l)
k , w

±(bj )
k }

We next describe the remaining extra Bethe roots for even p, the number of which depends

on the value of p. In figure 1, the extra roots are indicated with black circles. Since the

functions aj(u) and bj(u) have a different number of such extra roots, we present them

separately. The extra roots of the bj(u) functions have the form

w
±(bj )
k = ±w̃k +

(

2p + 1 − 2k

2

)

η , k = 1 , . . . , p − 1 ,

j = 1 , . . . ,
p

2
+ 1 . (3.2)

3Hence, strictly speaking, we should write the j = p

2
+ 1 equation in (3.1) separately, keeping only the

+ roots. However, in order to avoid doubling the number of equations, we commit this abuse of notation

here and throughout this section.
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The real parts of the roots, w̃k, are not all independent. Instead, they are related to each

other pairwise as follows,

w̃k = w̃p−k , k = 1 , . . . ,
p

2
− 1 . (3.3)

Only w̃ p

2
remains unpaired. This property proves to be crucial for the boundary energy

calculation.

There are two types of extra roots of the aj(u) functions:

w
±(aj ,1)
k = w

±(bj)
k = ±w̃k +

(

2p + 1 − 2k

2

)

η , k = 1 , . . . , p − 1 ,

w
±(aj ,2)
k = ±w̃0 +

(

2p + 3 − 2k

2

)

η , k = 1 , . . . , p + 1 ,

j = 1 , . . . ,
p

2
+ 1 . (3.4)

Note that the extra roots of the first type {w
±(aj ,1)
k } coincide with the b roots {w

±(bj )
k };

and that the extra roots of the second type {w
±(aj ,2)
k } form a “(p + 1)-string”, with real

part w̃0.

As previously remarked, for j = p
2 + 1, only the roots with the + sign appear.

3.3 Boundary energy

We now proceed to compute the boundary energy. Using the expression (2.19) for the

energy and our string hypothesis, we obtain (for p > 2)

E =
1

2
sinh η

{ N
2

∑

k=1

[

coth(v
+(bj )
k + (j − 1)η) + coth(v

−(bj )
k + (j − 1)η)

− coth(v
+(bj−1)
k + (j − 1)η) − coth(v

−(bj−1)
k + (j − 1)η)

]

+

p−1
∑

k=1

[

coth(w
+(bj )
k + (j − 1)η) + coth(w

−(bj )
k + (j − 1)η)

− coth(w
+(bj−1)
k + (j − 1)η) − coth(w

−(bj−1)
k + (j − 1)η)

]

}

+ E0 ,

j = 2 , . . . ,
p

2
. (3.5)

Recalling (3.1) and (3.2), this expression for the energy reduces to

E = sinh2 η

N
2

∑

k=1

1

sinh(ṽk − η
2 ) sinh(ṽk + η

2 )
+ E0 , ṽk > 0 , (3.6)

independently of the value of j. Since the extra roots w
(bj)
k are independent of j, their

contribution to the energy evidently cancels, leaving only the sea-root terms in (3.6). The

same result can also be obtained (for p ≥ 2) from the energy expression (2.21).

– 7 –
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We turn now to the Bethe Ansatz equations, on which we must also impose our string

hypothesis. Choosing j = p
2 + 1 in (2.9) with u

(bj)
l equal to the sea root v

+(b p
2
+1

)

l = ṽl +
iπ
2 ,

we obtain

h(−ṽl −
η
2 )

h(ṽl −
η
2 )

= −
b p

2
(ṽl + iπ

2 )

b p

2
(−ṽl −

iπ
2 )

, (3.7)

where we have made use of the fact b p

2
+2(u) = b p

2
(−u). More explicitly, this equation reads

(

sinh(ṽl + η
2 )

sinh(ṽl −
η
2 )

)2N
sinh(2ṽl + η)

sinh(2ṽl − η)

sinh(ṽl −
η
2 + α−)

sinh(ṽl + η
2 − α−)

cosh(ṽl −
η
2 + β−)

cosh(ṽl + η
2 − β−)

×
sinh(ṽl −

η
2 + α+)

sinh(ṽl + η
2 − α+)

cosh(ṽl −
η
2 + β+)

cosh(ṽl + η
2 − β+)

= −

N
2

∏

k=1

sinh(ṽl − ṽk + η)

sinh(ṽl − ṽk − η)

sinh(ṽl + ṽk + η)

sinh(ṽl + ṽk − η)
,

l = 1 , · · · ,
N

2
, ṽk > 0 . (3.8)

In obtaining this result, we have made use of the fact that the normalization constant B p

2

of the function b p

2
(u) cancels, and also that the contribution from the extra roots on the

r.h.s. cancel as a consequence of the relation (3.3) among their real parts.

Remarkably, as a consequence of our string hypothesis, our non-conventional Bethe

Ansatz equations have reduced to a conventional system (3.8), which can be analyzed by

standard methods. However, before proceeding further with this computation, it is worth

noting that the same equations can also be obtained starting from any j > 1. To see this,

we first observe that the {Aj} normalization constants are all equal, and similarly for the

{Bj} normalization constants,

A1 = A2 = . . . = A p

2
+1 , B1 = B2 = . . . = B p

2
+1 . (3.9)

This result follows from the Bethe-Ansatz-like equations (2.14)–(2.17) and the string hy-

pothesis. For example, using (3.1) and (3.2) in (2.16), and remembering the relation (3.3)

among the real parts of the extra roots, we obtain B1 = B2. Hence, choosing u
(bj)
l in (2.9)

to be a sea root v
+(bj)
l for any j ∈ {2 , . . . , p

2 + 1}, we again arrive at (3.8). Moreover, in

view of the identity

aj−1(v
+(aj )
l )

aj+1(v
+(aj )
l )

=
bj−1(v

+(bj)
l )

bj+1(v
+(bj)
l )

, j = 2 , . . . ,
p

2
+ 1 , (3.10)

where v
+(aj )
l = v

+(bj)
l is a sea root, the same result (3.8) can also be obtained from (2.7).4

In the thermodynamic (N → ∞) limit, the number of sea roots becomes infinite. The

distribution of the real parts of these roots {ṽk} can be represented by a density function,

which is computed from the counting function. To this end, following [21, 22] and references

therein, we define some basic quantities

en(λ) =
sinh µ

(

λ + in
2

)

sinh µ
(

λ − in
2

) , gn(λ) = en(λ ±
iπ

2µ
) =

cosh µ
(

λ + in
2

)

cosh µ
(

λ − in
2

) , (3.11)

4Only the first set of Bethe equations (2.6), (2.8) do not seem to reduce to (3.8).
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which allow us to rewrite the Bethe Ansatz equations (3.8) in a more compact form,

e1(λl)
2N+1 g1(λl)

e2a−−1(λl) e2a+−1(λl)

g1+2ib−(λl) g1+2ib+(λl)
= −

N
2

∏

k=1

e2(λl − λk) e2(λl + λk) ,

l = 1 , · · · ,
N

2
, (3.12)

where we have set ṽl = µλl, η = iµ , α± = iµa± , β± = µb±. Note that the parameters µ,

a±, b± are all real.

Taking the logarithm of (3.12), we obtain the desired ground state counting function

h(λ) =
1

2π

{

(2N + 1)q1(λ) + r1(λ) + q2a−−1(λ) − r1+2ib−(λ) + q2a+−1(λ) − r1+2ib+(λ)

−

N
2

∑

k=1

[q2(λ − λk) + q2(λ + λk)]
}

, (3.13)

where qn(λ) and rn(λ) are odd functions defined by

qn(λ) = π + i ln en(λ) = 2 tan−1 (cot(nµ/2) tanh(µλ)) ,

rn(λ) = i ln gn(λ) . (3.14)

Defining λ−k ≡ −λk, we have

−

N
2

∑

k=1

[q2(λ − λk) + q2(λ + λk)] = −

N
2

∑

k=−N
2

q2(λ − λk) + q2(λ) . (3.15)

The root density ρ(λ) for the ground state is therefore given by

ρ(λ) =
1

N

dh

dλ
= 2a1(λ) −

∫ ∞

−∞

dλ′ a2(λ − λ′) ρ(λ′) +
1

N

[

a1(λ) + b1(λ)

+a2(λ) + a2a−−1(λ) − b1+2ib−(λ) + a2a+−1(λ) − b1+2ib+(λ)
]

, (3.16)

where we have ignored corrections of higher order in 1/N when passing from a sum to an

integral, and we have introduced the notations5

an(λ) =
1

2π

d

dλ
qn(λ) =

µ

π

sin(nµ)

cosh(2µλ) − cos(nµ)
,

bn(λ) =
1

2π

d

dλ
rn(λ) = −

µ

π

sin(nµ)

cosh(2µλ) + cos(nµ)
. (3.17)

The solution of the linear integral equation (3.16) for ρ(λ) is obtained by Fourier transforms

and is given by6

ρ(λ) = 2s(λ) +
1

N
R(λ) , (3.18)

5These new functions an(λ) and bn(λ) should not be confused with the Q functions aj(u) and bj(u)

appearing earlier. We apologize for this unfortunate coincidence of notations.
6Our conventions are

f̂(ω) ≡

Z

∞

−∞

e
iωλ

f(λ) dλ , f(λ) =
1

2π

Z

∞

−∞

e
−iωλ

f̂(ω) dω .
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where

s(λ) =
1

2π

∫ ∞

−∞

dω e−iωλ 1

2 cosh(ω/2)
=

1

2 cosh(πλ)
, (3.19)

and

R̂(ω) =
1

(1 + â2(ω))

{

â1(ω) + b̂1(ω) + â2(ω) − b̂1+2ib−(ω) − b̂1+2ib+(ω)

+â2a−−1(ω) + â2a+−1(ω)
}

, (3.20)

with

ân(ω) = sgn(n)
sinh ((ν − |n|)ω/2)

sinh (νω/2)
, 0 ≤ |n| < 2ν , (3.21)

b̂n(ω) = −
sinh (nω/2)

sinh (νω/2)
, 0 < <e n < ν , (3.22)

where ν ≡ π
µ

= p + 1.

Expressing the energy expression (3.6) in terms of the newly defined quantities and

letting N become large, we obtain

E = −
2π sin µ

µ

N
2

∑

k=1

a1(λk) + E0 = −
π sin µ

µ

{

N
2

∑

k=−N
2

a1(λk) − a1(0)
}

+ E0

= −
π sin µ

µ

{

N

∫ ∞

−∞

dλ a1(λ) ρ(λ) − a1(0)
}

+
1

2
(N − 1) cos µ

+
1

2
sin µ (cot µa− + i tanh µb− + cot µa+ + i tanh µb+) , (3.23)

where again we ignore corrections that are higher order in 1/N . Substituting the re-

sult (3.18) for the root density, we obtain

E = Ebulk + Eboundary , (3.24)

where the bulk (order N) energy is given by

Ebulk = −
2Nπ sin µ

µ

∫ ∞

−∞

dλ a1(λ) s(λ) +
1

2
N cos µ

= −N sin2 µ

∫ ∞

−∞

dλ
1

[cosh(2µλ) − cos µ] cosh(πλ)
+

1

2
N cos µ , (3.25)

which agrees with the well-known result [23]. The boundary (order 1) energy is given by

Eboundary =−
π sin µ

µ
I−

1

2
cos µ+

1

2
sinµ(cot µa−+i tanh µb−+cot µa++i tanh µb+), (3.26)

where I is the integral

I =

∫ ∞

−∞

dλ a1(λ) [R(λ) − δ(λ)] =
1

2π

∫ ∞

−∞

dω â1(ω)
[

R̂(ω) − 1
]

=
1

2π

∫ ∞

−∞

dω ŝ(ω)
{

â1(ω) + b̂1(ω) − 1

−b̂1+2ib−(ω) − b̂1+2ib+(ω) + â2a−−1(ω) + â2a+−1(ω)
}

. (3.27)

– 10 –
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Figure 2: Shaded area denotes region of the (=m α+ ,=m α
−

) plane for which the ground-state

Bethe roots obey the string hypothesis for p = 2, N = 2, β
−

= −1.882, β+ = 1.878, θ
−

= 0.6i,

θ+ = 0.7i.

Figure 3: Shaded area denotes region of the (β+ , β
−

) plane for which the ground-state Bethe roots

obey the string hypothesis for p = 2, N = 2, α
−

= −1.818i, α+ = 2.959i, θ
−

= 0.7i, θ+ = 0.6i.

We further write the boundary energy as the sum of contributions from the left and right

boundaries, Eboundary = E−
boundary + E+

boundary. The energy contribution from each bound-

ary is given by

E±
boundary = −

sinµ

2µ

∫ ∞

−∞

dω
1

2 cosh(ω/2)

{sinh((ν − 2)ω/4)

2 sinh(νω/4)
−

1

2

+ sgn(2a± − 1)
sinh((ν − |2a± − 1|)ω/2)

sinh(νω/2)
+

sinh((2ib± + 1)ω/2)

sinh(νω/2)

}

+
1

2
sin µ (cot µa± + i tanh µb±) −

1

4
cos µ . (3.28)

This result can be shown to coincide with previous results in [21, 22].

We emphasize that the result (3.28) has been derived under the assumption that the

Bethe roots for the ground state obey the string hypothesis, which is true only for suitable

values of the boundary parameters. For example, the shaded areas in figures 2 and 3

denote regions of parameter space for which the ground-state Bethe roots have the form

described in sections 3.1 and 3.2. The α± and β± parameters are varied in the two figures,

respectively.

4. Odd p

In this section, we consider the case where the bulk anisotropy parameter assumes the

values (1.3) with p odd, i.e., η = iπ
2 , iπ

4 , . . .. As for the even p case, for suitable values

– 11 –
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Figure 4: Ground-state Bethe roots for p = 3, N = 4, α
−

= 1.554i, α+ = 0.948i, β
−

= −0.214,

β+ = 0.186, θ
−

= 0.6i, θ+ = 0.7i.

of the boundary parameters, the ground state Bethe roots {u
(aj )
k , u

(bj)
k } have a regular

pattern. An example with p = 3 , N = 4 is shown in figure 4. As before, these roots can

be categorized into sea roots (the number of which depends on N) and extra roots (the

number of which depends on p) according to the following pattern which we adopt as our

“string hypothesis”.

4.1 Sea roots {v
±(aj )
k , v

±(bj )
k }

Sea roots of all {aj(u) , bj(u)} functions for odd p are given by

v
±(aj )
k = v

±(bj)
k = ±ṽk +

(

2p + 3 − 2j

2

)

η , k = 1 , . . . ,
N

2
,

j = 1 , . . . ,
p + 1

2
, (4.1)

where ṽk are real and positive. In figure 4, the sea roots are indicated with red stars.

As in the even p case, the real parts (±ṽk) are independent of j. This again provides

simplification to the analysis. In contrast to the even p case, now none of the functions

{aj(u) , bj(u)} has crossing symmetry. Hence, there are N sea roots for all values of j.

4.2 Extra roots {w
(aj ,l)
k , w

(bj )
k }

We now describe the extra Bethe roots for odd p. In figure 4, the extra roots are indicated

– 12 –
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with black circles. We start with the p − 1 extra roots of the bj(u) functions:

w
±(bj )
k = ±w̃k + (p − k) η , k = 1 , . . . , p − 2 ,

w
±(bj )
p−1 = ±w̃p−1 +

(

p + 2 − 2j

2

)

η , j = 1 , . . . ,
p + 1

2
. (4.2)

Similarly to the even p case, the real parts of the extra roots are related to each other

pairwise,

w̃k = w̃p−k−1 , k = 1 , . . . ,
p − 3

2
, (4.3)

so that only w̃ p−1

2

remains unpaired.

Similarly, the extra roots of the aj(u) functions are as follows,

w
±(aj ,1)
k = w

±(bj )
k = ±w̃k + (p − k) η , k = 1 , . . . , p − 2 ,

w
±(aj ,1)
p−1 = w

±(bj )
p−1 = ±w̃p−1 +

(

p + 2 − 2j

2

)

η ,

w
±(aj ,2)
k = ±w̃0 + (p + 1 − k) η , k = 1 , . . . , p + 1 , j = 1 , . . . ,

p + 1

2
. (4.4)

As in the even p case, the extra roots of the first type {w
±(aj ,1)
k } coincide with the b roots

{w
±(bj )
k }. Moreover, the extra roots of the second type {w

±(aj ,2)
k } form a “(p + 1)-string”,

with real part w̃0.

However, in contrast to the even p case, some of the extra roots (namely, w
(aj ,1)
p−1 and

w
(bj )
p−1) depend on the value of j. Hence, as we shall see, these extra roots will not cancel

from either the energy expression or the Bethe equations. Nevertheless, the contribution

of these roots to the boundary energy will ultimately cancel.

4.3 Boundary energy

As in the case of even p, we use the energy expression (2.19) and the string hypothesis to

obtain (for p ≥ 3)

E =
1

2
sinh η

{ N
2

∑

k=1

[

coth(v
+(bj )
k + (j − 1)η) + coth(v

−(bj )
k + (j − 1)η)

− coth(v
+(bj−1)
k + (j − 1)η) − coth(v

−(bj−1)
k + (j − 1)η)

]

+

p−1
∑

k=1

[

coth(w
+(bj )
k + (j − 1)η) + coth(w

−(bj )
k + (j − 1)η)

− coth(w
+(bj−1)
k + (j − 1)η) − coth(w

−(bj−1)
k + (j − 1)η)

]

}

+ E0 ,

j = 2 , . . . ,
p + 1

2
. (4.5)
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Recalling (4.1) and (4.2), this expression for the energy reduces, independently of the value

of j, to

E = sinh2 η

N
2

∑

k=1

1

sinh(ṽk − η
2 ) sinh(ṽk + η

2 )
−

2 sinh2 η

cosh η + cosh(2w̃p−1)
+ E0 , (4.6)

where ṽk , w̃p−1 > 0. As already anticipated, the expression for the energy depends on the

extra root w̃p−1 as well as on the sea roots.

Turning now to the Bethe Ansatz equations, following similar arguments as for the

even p case, we find again that the A normalization constants are all equal, and similarly

for the B’s,

A1 = A2 = . . . = A p+1

2

, B1 = B2 = . . . = B p+1

2

. (4.7)

Choosing u
(bj )
l in (2.9) to be a sea root v

+(bj)
l for any j ∈ {2 , . . . , p+1

2 }, we obtain

(

sinh(ṽl + η
2 )

sinh(ṽl −
η
2 )

)2N
sinh(2ṽl + η)

sinh(2ṽl − η)

sinh(ṽl −
η
2 + α−)

sinh(ṽl + η
2 − α−)

cosh(ṽl −
η
2 + β−)

cosh(ṽl + η
2 − β−)

×
sinh(ṽl −

η
2 + α+)

sinh(ṽl + η
2 − α+)

cosh(ṽl −
η
2 + β+)

cosh(ṽl + η
2 − β+)

=−
sinh(ṽl − w̃p−1−

p−1
2 η)

sinh(ṽl − w̃p−1+ p−1
2 η)

sinh(ṽl + w̃p−1−
p−1
2 η)

sinh(ṽl + w̃p−1+ p−1
2 η)

×

N
2

∏

k=1

sinh(ṽl − ṽk + η)

sinh(ṽl − ṽk − η)

sinh(ṽl + ṽk + η)

sinh(ṽl + ṽk − η)
, l = 1 , · · · ,

N

2
, ṽk , w̃p−1 > 0 . (4.8)

In a compact form, this result can be written as

e1(λl)
2N+1 g1(λl)

e2a−−1(λl) e2a+−1(λl)

g1+2ib−(λl) g1+2ib+(λl)
= −

[

ep−1(λl − λ̄) ep−1(λl + λ̄)
]−1

×

N
2

∏

k=1

e2(λl − λk) e2(λl + λk) , l = 1 , · · · ,
N

2
, (4.9)

where w̃p−1 = µλ̄. The corresponding ground state counting function is given by

h(λ) =
1

2π

{

(2N + 1)q1(λ) + r1(λ) + q2a−−1(λ) − r1+2ib−(λ) + q2a+−1(λ) − r1+2ib+(λ)

+qp−1(λ − λ̄) + qp−1(λ + λ̄) −

N
2

∑

k=1

[q2(λ − λk) + q2(λ + λk)]
}

. (4.10)

Following similar procedure as before, we arrive at the root density for the ground state

ρ(λ) = 2a1(λ) −

∫ ∞

−∞

dλ′ a2(λ − λ′) ρ(λ′) +
1

N

[

a1(λ) + b1(λ) + a2(λ) (4.11)

+a2a−−1(λ) − b1+2ib−(λ) + a2a+−1(λ) − b1+2ib+(λ) + ap−1(λ − λ̄) + ap−1(λ + λ̄)
]

,

– 14 –
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where as before higher order corrections in 1/N are ignored when passing from a sum to

an integral. This yields

ρ(λ) = 2s(λ) +
1

N
R(λ) , (4.12)

where now

R̂(ω) =
1

(1 + â2(ω))

{

â1(ω) + b̂1(ω) + â2(ω) − b̂1+2ib−(ω) − b̂1+2ib+(ω)

+â2a−−1(ω) + â2a+−1(ω) + 2 cos(λ̄ω) âp−1(ω)
}

. (4.13)

The energy expression (4.6) yields, as N → ∞,

E = −
2π sin µ

µ

{

N
2

∑

k=1

a1(λk) + b1(λ̄)
}

+ E0

= −
π sin µ

µ

{

N
2

∑

k=−N
2

a1(λk) − a1(0) + 2b1(λ̄)
}

+ E0

= −
π sin µ

µ

{

N

∫ ∞

−∞

dλ a1(λ) ρ(λ) − a1(0) + 2b1(λ̄)
}

+
1

2
(N − 1) cos µ

+
1

2
sin µ (cot µa− + i tanh µb− + cot µa+ + i tanh µb+) . (4.14)

Substituting (4.12) for the root density, we again obtain

E = Ebulk + Eboundary , (4.15)

where the bulk (order N) energy is again given by (3.25). The boundary energy is now

given by

Eboundary = −
π sin µ

µ
I −

1

2
cos µ +

1

2
sin µ (cot µa− + i tanh µb− + cot µa+ + i tanh µb+)

−
2π sin µ

µ
b1(λ̄) , (4.16)

where I is now the integral

I =

∫ ∞

−∞

dλ a1(λ) [R(λ) − δ(λ)] =
1

2π

∫ ∞

−∞

dω â1(ω)
[

R̂(ω) − 1
]

=
1

2π

∫ ∞

−∞

dω ŝ(ω)
{

â1(ω) + b̂1(ω) − 1

−b̂1+2ib−(ω) − b̂1+2ib+(ω) + â2a−−1(ω) + â2a+−1(ω) + 2 cos(λ̄ω) âp−1(ω)
}

.(4.17)

Using the fact that ŝ(ω)âp−1(ω) = −b̂1(ω), we see that there is a perfect cancellation of the

last term in (4.16) which depends on the extra root λ̄. Thus, as in the even p case, there

is no contribution to the boundary energy from extra roots. Proceeding as before, we find

– 15 –
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Figure 5: Shaded area denotes region of the (=m α+ ,=m α
−

) plane for which the ground-state

Bethe roots obey the string hypothesis for p = 3, N = 2, β
−

= −0.85, β+ = 0.9, θ
−

= 0.6i,

θ+ = 0.7i.

Figure 6: Shaded area denotes region of the (β+ , β
−

) plane for which the ground-state Bethe

roots obey the string hypothesis for p = 3, N = 2, α
−

= 1.2i, α+ = 0.98i, θ
−

= 0.7i, θ+ = 0.6i.

that the energy contribution from each boundary is again given by (3.28), thus coinciding

with previous results in [21, 22].

As for even p, the derivation here is based on the string hypothesis for the ground-state

Bethe roots, which is true only for suitable values of boundary parameters. For example,

the shaded areas in figures 5 and 6 denote the regions of parameter space for which the

ground-state Bethe roots have the form described in sections 4.1 and 4.2. The α± and β±

parameters are varied in the two figures, respectively.

5. Discussion

We have studied the ground state of the general integrable open XXZ spin-1/2 chain (1.1)

in the thermodynamic limit, utilizing the solution we found recently in [19]. In contrast

to the earlier solution [6 – 9], this solution does not assume any restrictions or constraints

among the boundary parameters. However, the bulk parameter is restricted to values

corresponding to roots of unity (1.3). The key to working with this solution is formulating

an appropriate string hypothesis, which leads to a reduction of the Bethe Ansatz equations

to a conventional form. While the idea of using a string hypothesis to simplify the analysis

of Bethe equations is as old as the Bethe Ansatz itself, the particular patterns appearing

here are perhaps unparalleled in their rich structure.
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The boundary energy result (3.28) was obtained previously [21] for bulk and boundary

parameters that are unconstrained and constrained, respectively; and we have now obtained

the same result for the reversed situation, namely, for bulk and boundary parameters that

are constrained and unconstrained, respectively. Hence, this result presumably holds when

both the bulk and boundary parameters are unconstrained (within some suitable domains).

Indeed, for the boundary sine-Gordon model [2], which is closely related to the open XXZ

chain, the expression [24] for the boundary energy is valid for general values of the bulk and

boundary parameters. In view of the spectral equivalence between systems with diagonal

and nondiagonal boundary interactions noted in [11, 15, 16], it may be interesting to try to

relate our boundary energy result with the corresponding result [20] for diagonal boundary

interactions.

Having demonstrated the practicality of this solution, we now expect that it should be

possible to use a similar approach to analyze further properties of the model, such as the

Casimir energy (order 1/N correction to the ground state energy), and bulk and boundary

excited states.

There is an evident redundancy in the solution which we have used here: there are

many equivalent expressions for the energy (see, e.g., (2.19), (2.21)), and we find that

the Bethe Ansatz equations (2.7), (2.9) all become equivalent upon imposing the string

hypothesis. Moreover, while there are various “extra” Bethe roots describing the ground

state, they ultimately do not contribute to the boundary energy. All of this suggests that

it may be possible to find a simpler and more economical solution of the model involving

fewer Q functions. Ideally, one would like to find a solution for which neither bulk nor

boundary parameters are constrained.
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A. Expressions for f1(u) and µk

We list here explicit expressions for the function f1(u) and the coefficients µk appearing in

the text. We remind the reader that we assume throughout that N is even.

For even values of p, the function f1(u) appearing in the Bethe Ansatz equations (2.6)–

(2.9), (2.18) is given by

f1(u) = −23−2p
(

sinh((p+1)α−) cosh((p+1)β−) sinh((p+1)α+) cosh((p+1)β+) cosh2((p + 1)u)

− cosh((p+1)α−) sinh((p+1)β−) cosh((p+1)α+) sinh((p+1)β+) sinh2((p+1)u)

− cosh((p+1)(θ−−θ+)) sinh2((p+1)u) cosh2((p+1)u)
)

. (A.1)
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For odd values of p,

f1(u) = −23−2p
(

cosh((p+1)α−) cosh((p+1)β−) cosh((p+1)α+) cosh((p+1)β+) sinh2((p+1)u)

−sinh((p+1)α−) sinh((p+1)β−) sinh((p+1)α+) sinh((p+1)β+) cosh2((p+1)u)

+cosh((p+1)(θ−−θ+)) sinh2((p+1)u) cosh2((p+1)u)
)

. (A.2)

For both even and odd values of p, these functions have the properties

f1(u + η) = f1(u) , f1(−u) = f1(u). (A.3)

The coefficients µk appearing in the function Y (u) (2.13) are given as follows for even

(upper sign) and odd (lower sign) values of p.

µ0 = 2−4p

{

− 1 − cosh2((p + 1)(θ− − θ+))

− cosh(2(p + 1)α−) cosh(2(p + 1)α+) ∓ cosh(2(p + 1)α−) cosh(2(p + 1)β−)

∓ cosh(2(p + 1)α+) cosh(2(p + 1)β−) ∓ cosh(2(p + 1)α−) cosh(2(p + 1)β+)

∓ cosh(2(p + 1)α+) cosh(2(p + 1)β+) − cosh(2(p + 1)β−) cosh(2(p + 1)β+)

+
[

cosh((p + 1)(α− + α+)) cosh((p + 1)(β− − β+))

± cosh((p + 1)(α− − α+)) cosh((p + 1)(β− + β+))
]2

∓2 cosh((p + 1)(θ− − θ+))
[

cosh((p + 1)(α− − α+)) cosh((p + 1)(β− − β+))

± cosh((p + 1)(α− + α+)) cosh((p + 1)(β− + β+))
]

}

,

µ1 = 21−4p

{

cosh((p + 1)(α− ∓ α+))
[

cosh((p + 1)(α− ± α+))

+ cosh((p + 1)(β− ± β+)) cosh((p + 1)(θ− − θ+))
]

∓ cosh((p + 1)(β− ∓ β+))
[

cosh((p + 1)(β− ± β+))

+ cosh((p + 1)(α− ± α+)) cosh((p + 1)(θ− − θ+))
]

}

,

µ2 = 2−4p sinh2((p + 1)(θ− − θ+)) . (A.4)
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